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ABSTRACT 

Up to now, there have not been found a research about Generalized Space Time 

Autoregressive (GSTAR) that involve predictor. In fact, forecasting model in many 

cases involved predictor(s) both in univariate and multivariate cases such as 

ARIMAX and VARIMAX models. Moreover, most research about GSTAR models 

used Ordinary Least Squares (OLS) methods to estimate the parameters model. In 

many cases, the residuals of GSTAR model have correlation between locations and 

imply OLS method yields inefficient estimators. Otherwise, Generalized Least 

Squares (GLS) method that usually be used in Seemingly Unrelated Regression 

(SUR) model is an appropriate method for estimating parameters of multivariate 

models when the residuals between equations are correlated. The aim of this study is 

to propose GSTARX model with GLS method for estimating the parameters, known 

as GSTARX-GLS model. This research focuses on non metric predictor known as 

intervention variable. Theoretical study was carried out to develop new model 

building procedure for GSTARX-GLS model and the results were validated by 

simulation study. Then, the proposed model was applied for inflation forecasting at 

several cities in Indonesia. The results showed that GSTARX-GLS model yielded 

more efficient estimators than the GSTARX-OLS model. It was proved by the 

smaller standard error of GSTARX-GLS estimator. Additionally, GSTARX-GLS 

and GSTARX-OLS models gave more accurate inflation prediction in four cities in 

Indonesia than VARIMAX model. 
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1. Introduction 

Due to computational advances and many open problems in 

forecasting could not be answered by univariate forecasting methods, it 

causes a lot of researches have been done on multivariate forecasting 

methods in recent years (De Gooijer and Hyndman (2006)). One of 

multivariate forecasting methods that frequently used in practical problem 

is VARIMA (Vector Autoregressive Moving Average). In daily activities, 

we often deal multivariate time series data that have relationship not only in 

time (with previous observations), but also in space (with observations at 

other location), known as spatio-temporal data (Ruchjana (2002)). Pfeifer 

and Deutsch (1980a, 1980b) are researchers who firstly introduce the space-

time model, i.e. Space-Time Autoregressive or STAR model. 

 

STAR model has disadvantage on the parameters flexibility that 

describes the relationship between space and time at spatio-temporal data. 

This limitation has been corrected by Ruchjana (2002) through a model 

known as Space-Time Model Generalized Autoregressive or GSTAR. Some 

researches about GSTAR have been done in many fields of application such 

as air pollution forecasting (Wutsqa and Suhartono (2010)) and tourism 

prediction (Wutsqa et al. (2010)). 

 

In practice, forecasting activity both in univariate and multivariate 

cases frequently involves predictors. In time series analysis literatures, 

forecasting model which consists of predictors, usually notified by X, called 

ARIMAX (for univariate case) and VARIMAX (for multivariate case). 

Specifically, if predictors are metric then the ARIMAX is known as 

Transfer Function model (Box et al. (1994)), and for non metric predictors 

known as Intervention Analysis (Ismail et al. (2009); Lee et al. (2010)) or 

Calendar Variation models (Liu (2006)). 

 
Literature survey showed that until now there is no research about 

space-time model that involves predictor variables. Moreover, most of 

GSTAR researches employed Ordinary Least Square (OLS) method to 

estimate the parameters model. OLS method assumes that residual of the 

model satisfies white noise and normally distributed condition. It means 

that residual in certain location has no correlation with residual in other 

locations. Unfortunately, the residual of GSTAR model in many cases tends 

to have correlation between locations, and it implies OLS yields inefficient 

estimators. Otherwise, Generalized Least Squares (GLS) is a parameter 

estimation method which could overcome the problem of correlation 

between residuals in different equations (locations). This method is usually 

applied to the Seemingly Unrelated Regression (SUR) model. The objective 
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of this research is to develop GSTARX (GSTAR with a predictor) model 

for spatio-temporal data forecasting by implementing GLS method 

hereinafter written by GSTARX-GLS. This research focuses on non metric 

predictor variables. As acase study, the GSTARX-GLS model is applied for 

forecasting inflation in four major cities in Indonesia, i.e. Surabaya, 

Malang, Jember and Kediri, whereas the increase in fuel prices and Eid 

holiday as non metric predictors. 

 

2. Methods 

In this section, we describe the statistical method that is used for 

statistical estimations. 

 

2.1  GSTAR Model 

GSTAR is a generalization of the STAR models. Let  ( ) : 0, 1, 2,Z t t     is 

a multivariate time series of N locations, then GSTAR with time order p and 

spatial order 
p ,,, 11  , i.e. GSTAR 1 1( ; , , , )pp    , in matrix notation can 

be written as follows (see Wutsqa et al., 2010): 
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Thus, equation (2) can be written in matrix form as follows:  
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There are several matrices of spatial weights or W that usually used in 

GSTAR model, i.e. uniform weight, weight based on inverse of distance 

between locations, weight based on normalization of cross correlation 

inference, and weight based on normalization of partial cross correlation 

inference (Suhartono and Subanar, 2006); Wutsqa et al., 2010).  
 

2.2  Parameter Estimation 

As in linear regression model, the estimator of GSTAR model could be 

obtained from OLS method by minimizing the sum of squares error, i.e. 

minimizing )()( XβYXβYee  . Thus, the OLS estimators β are as 

follows: 

ˆ  -1
β = (XX) XY .                                              (4) 

In many cases, the residuals of GSTAR are correlated between locations 

and imply the OLS estimators become inefficient.  

 

Otherwise, Generalized Least Squares (GLS) is an estimation method which 

could overcome the problem of correlation between residuals in different 

equations (locations). This method is usually applied to the Seemingly 

Unrelated Regression (SUR) model. SUR model consists of several 

equations and the relationships between variables are not in two-way 

relation, and there are correlations between equations that imply the 

residuals also have correlation between equations (Zellner (1962)). SUR 

models with M  the dependent variables could be written as follows: 

i i i i Z X β e ,  Mi ,,2,1                 (5) 

where
iZ  is vector T1 of the sequences observation of the dependent 

variables, 
iX  is an observation matrix Tk of the independent variables, 

iβ  
is the parameter vector k1, and ie is the residual vector T1. Equation (5) 

can also be written as follows: 
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This equation is a SUR model which assuming  1 2, , , ME e | X X L X 0  
and 

 1 2, , , ME  ee | X X X Ω , where Ω is the variance-covariance matrix, i.e. 

 Ω Σ I  (see Greene, 2002). 

 

3. Research Design 

Three studies are conducted in this research, i.e. the theoretical study 

on the development of GSTARX model building procedure using GLS 

estimation, simulation studies to validate the proposed modeling procedure, 

and applied study on forecasting inflation in four cities in Indonesia. 

Theoretical studies focus on determining the appropriate statistics that can 

be used to identify the order of GSTARX model and data structure on the 

GLS estimation. Simulation studies are designed for generating six 

GSTARX models and three scenarios of the effect of intervention as 

illustrated at Figure 1 and 2. 
 

     
 

Figure 1: Design of Simulation Studies 

 
 

 
 

 

Figure 2: Three Scenarios of the Effect of InterventionVariable  
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In applied study, monthly inflation in four major cities at East Java 

Province, i.e. Surabaya, Malang, Jember and Kediri in the period 2000-

2013 are used as case study. The data obtained from the Indonesian Central 

Bureau of Statistics. Both of an increase in the price of fuel and the 

presence of Eid during this period are used as predictor variables, i.e. 

intervention and dummy variable, respectively. Time series plot of monthly 

inflation in that four cities could be shown at Figure 3. 
 

 

 
 

Figure 3: Time Series Plot of Inflation Data in (a) Surabaya, (b) Malang, (c) Jember, and (d) Kediri 

 

4. Results 

This section presents the results from theoretical study particularly 

about how to estimate the model parameter by using GLS method, 

simulation study about the advantage of GLS estimator, and applied studies 

about the forecast accuracy of GSTARX-GLS model for inflation 

forecasting, respectively. 
 

4.1   Parameter Estimation  of GSTARX-GLS Model 

If  and a series  is a multivariate time 

series of N locations, then GSTARX model with first order autoregressive, 

, spatial order 1, and the intervention order , i.e. 

GSTARX(11), can be written as follows: 

1
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The estimated parameters of GSTARX-GLS model obtained from: 

                                      (8) 

where 
TIΣΩ  , = variance covariance matrix of size (NN), i.e.  
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4.2   Results of Simulation Study 

In general, the simulated GSTARX(11) model with intervention order

 could be written as follows: 
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residuals between locations have no correlation. Moreover, the GSTARX-

GLS estimator for the third, fourth, fifth and sixth simulations yield lower 

standard error than GSTARX-OLS estimator. The comparison between 

GLS and OLS estimator of GSTARX model, particularly for scenario 3, 

could be seen in Figure 4 (for the spatio-temporal parameters). 

 

Based on Figure 4, it can be seen that both estimators (OLS and GLS) are 

unbiased estimators. It is shown by the actual parameters (dashed blue line) 

are all inside of the plot (distribution of OLS and GLS estimators). 

Furthermore, the results also show that most of GLS estimators (red 

polygon) have lower standard error and indicate more efficient than OLS 

estimators (black polygon). It is illustrated by the distribution for 

GSTARX-GLS estimators (red polygon) tend to be narrower (or lower 

standard error) smaller than the distribution of GSTARX-OLS estimators 

(black polygon). Additionally, the results of the fourth, fifth, and sixth 

simulation studies also show the same conclusion with the third simulation 

study, i.e. GLS estimators have lower standard error than OLS estimators. 

 

 

 
 

Figure 4: Distribution Plot of Spatio-Temporal Parameter in GSTARX Model on the 3rd simulation with 
Scenario3 

 

4.3   Results of Applied Study  

Figure 3 illustrate that the inflation data for 2000 to 2005 period in 

Surabaya, Malang, Jember and Kediri tend to be stable. However, in March 

and October 2005, there was high increase of inflation for all four locations 

due to an increase in fuel prices. The correlation between inflation in those 

four cities could be seen at Table1. It shows that all locations have high 

correlation with other locations.  
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TABLE 1: Correlation between Locations for Inflation Data 
 

Location Surabaya Malang Jember  

Malang 0.855 
  

 

Jember 0.878 0.856 
 

 

Kediri 0.884 0.848 0.863  

 

4.4   Determination of order , ,l l lb s r  from Intervention Variable X  

The order 
lll rsb ,, of intervention variable X are determined by using 

response function plot as shown at Figure 5. This figure shows that the 

effect of interventions on inflation could be seen at the time T or (t=T). It 

means that the interventions at all locations have the order value of 

0 rsb .  
 

 

 
Figure5: Response Function Plot for Determining the Order of Intervention in GSTARX Model for 

Inflation at 4 Cities 

 

4.5   Identification of the Autoregressive Order of GSTARX Model 

As in VARIMAX model, identification of the autoregressive order is done 

by using plotMPCCF (Matrix Partial Cross Correlation Function) of 

stationary data and minimum value of AIC. Figure 6 and Table 2 illustrate 

the MPCCF and AIC values, respectively. 
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Figure 6: MPCCF Plot of Inflation at FourCities 

 

Based on the smallest AIC in Table 2, it shows that the best multivariate 

model involves the 1
st
 and 4

th
 order of autoregressive. Thus, the time order 

of the GSTARX model is GSTARX([1,4]1). This study uses four types of 

spatial weight, i.e. uniform, based on inverse of distance, normalization of 

cross-correlation, and normalization of partial cross-correlation inference. 

 

TABLE 2: The AIC of Several Tentative GSTARX Models 

Lag MA(0) MA(1) 

AR(0) -5.656 -5.540 

AR(1) -6.051 -5.964 
AR(2) -5.983 -5.882 

AR(3) -6.211 -6.022 

AR(4) -6.325 -6.109 
AR(5) -6.218 -6.017 

 

The best GSTARX-GLS model for inflation at four cities is using spatial 

weight based on normalization of partial cross-correlation inference, i.e. 
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Finally, the forecast accuracy between GSTAR-GLS, GSTAR-OLS and 

VARIMAX models are compared by implementing RMSE criteria at out 

sample data, i.e. January-December 2013. The result is shown in Table3. 
 

Table 3 shows that the smallest RMSE for forecasting inflation in each city 

is yielded by different model. The best model for forecasting inflation in 

Surabaya obtained by GSTARX-GLS model with spatial weight based on 

normalized cross-correlation, whereas in Malang by GSTARX-GLS model 

with spatial weight based on normalized partial cross-correlation inference. 

Furthermore, the best model for forecasting inflation in Jember and Kediri 

is GSTARX-OLS models with spatial weight based on normalized partial 

cross-correlation inference and inverse distance, respectively. 

 
TABLE 3: The Results of Forecast Accuracy Comparison between GSTAR-GLS, GSTAR-OLS and 

VARIMAX Models 

Model Spatial Weight 
RMSE  Total 

RMSE  Surabaya Malang Jember Kediri 

VARIMAX  0.900 1.033 0.947 0.981 0.967 

GSTARX-

OLS 

Uniform 0.808 0.946 0.834 0.956 0.889 

Inverse of distance  0.822 0.927 0.811 0.740* 0.828 

Normalized cross-correlation 0.831 1.112 0.847 0.742 0.894 

Normalized partial cross-

correlation inference 
0.713 0.923 0.800* 0.751 0.801* 

GSTARX-

GLS 

Uniform 0.837 0.972 0.973 0.836 0.907 

Inverse of distance  0.828 1.196 0.876 0.813 0.941 

Normalized cross-correlation 0.666* 1.092 0.881 0.778 0.868 

Normalized partial cross-

correlation inference 
0.710 0.911* 0.886 0.782 0.826* 

*Smallest RMSE       

 

5. Conclusion 

Based on the results of theoretical study it could be concluded that 

the model building of GSTARX-GLS has been proposed starting by 

identification step to determine the order of spatio-temporal and order of the 

effect (influence) of predictor variables. Moreover, the results of simulation 

study shows that estimators of GSTARX-GLS are more efficient than 

GSTAR-OLS, particularly shown by lower standard error of the estimators 

in case that residual between locations are correlated. Additionally, the 

empirical or applied study shows that GSTARX models yield more accurate 

forecast than VARIMAX model for forecasting inflation in four cities in 

Indonesia. It is shown by lower RMSE both of GSTARX-GLS and 

GSTARX-OLS than VARIMAX. Specifically, GSTARX-OLS yields more 
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accurate forecast for inflation in Jember and Kediri, whereas GSTARX-

GLS give more accurate forecast for inflation in Surabaya and Malang. 

 

Further research is needed particularly for developing GSTARX 

model by involving both step function intervention and metric predictors as 

Transfer Function model. Moreover, other comparison study in other fields 

of forecasting is required to validate the proposed model. 
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